4.6 Article

Memristor-Based Biologically Plausible Memory Based on Discrete and Continuous Attractor Networks for Neuromorphic Systems

期刊

ADVANCED INTELLIGENT SYSTEMS
卷 2, 期 3, 页码 -

出版社

WILEY
DOI: 10.1002/aisy.202000001

关键词

associative memory; attractor neural networks; memristors; neuromorphic computing; working memory

资金

  1. National Outstanding Youth Science Fund Project of National Natural Science Foundation of China [61925401]
  2. National Key R&D Program of China [2017YFA0207600]
  3. National Natural Science Foundation of China [61674006, 61927901, 61421005]
  4. 111 Project [B18001]
  5. Beijing Academy of Artificial Intelligence (BAAI)
  6. Tencent Foundation

向作者/读者索取更多资源

To approach an advanced neuromorphic system, a significant unsettled problem is how to realize biologically plausible memory structures that are dramatically different from classical computers. Herein, a physical system based on memristors is simulated to realize associative memory based on discrete attractor networks, which is essentially content-based storage, and the influence of device characteristics on network performance is systematically studied. An in situ unsupervised learning method is applied to make greater use of array structure and competitions between neurons, demonstrating significant performance improvement in memory capacity and noise tolerance compared with existing supervised approaches. By extending to continuous attractor neural networks (CANNs), working memory is realized based on memristors for the first time via simulation, and the write and read noises in memristor arrays are found to have different impacts on the ability of CANN in maintaining dynamic information. This work lays a foundation for the construction of future advanced neuromorphic computing systems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据