4.4 Article

In silico study of Aquaporin V: Effects and affinity of the central pore-occluding lipid

期刊

BIOPHYSICAL CHEMISTRY
卷 171, 期 -, 页码 24-30

出版社

ELSEVIER
DOI: 10.1016/j.bpc.2012.09.004

关键词

Aquaporin; Membrane protein; Permeation; Lipid-protein interaction; Free energy

资金

  1. NIGMS NIH HHS [SC3 GM084834] Funding Source: Medline

向作者/读者索取更多资源

Because of its roles in human physiology, Aquaporin V (AQP5), a major intrinsic protein, has been a subject of many in vitro studies. In particular, a 2008 experiment produced its crystal structure at 2.0 angstrom resolution, which is in a tetrameric conformation consisting of four protomers. Each protomer forms an amphipathic pore that is fit for water permeation. The tetramer has a pore along its quasi-symmetry axis formed by quadruplets of hydrophobic residues (every protomer contributes equally to the quadruplets). A lipid, phosphatidylserine (PS6), is bound to AQP5 in the central pore, totally occluding it. A 2009 experiment showed that AQP5 facilitates not only permeation of water but also permeation of hydrophobic gas molecules across the cell membrane. In this article, we present an in silico study of AQP5 to elucidate the effects of PS6's binding to and dissociating from AQP5's central pore. Computing the lipid's chemical-potential along its dissociation path, we find that PS6 inhibits the function of the central pore with an IC50 in the micromolar range. Examining the central pore and the interstices between two adjacent protomers, we propose that nonpolar gas molecules (O-2) permeate through AQP5's hydrophobic central pore when un-occluded. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据