4.7 Article

Microfabrication of poly(acrylamide) hydrogels with independently controlled topography and stiffness

期刊

BIOFABRICATION
卷 12, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1758-5090/ab7552

关键词

microstructured hydrogels; topography; substrate stiffness; polyacrylamide; contact guidance; myotube differentiation; intestinal epithelial cells

资金

  1. European Union [647863]
  2. CERCA Programme/Generalitat de Catalunya [2017-SGR-1079]
  3. Spanish Ministry of Economy and Competitiveness [TEC2017-83716-C2-1-R]
  4. Severo Ochoa Program for Centers of Excellence in RD

向作者/读者索取更多资源

The stiffness and topography of a cell's extracellular matrix (ECM) are physical cues that play a key role in regulating processes that determine cellular fate and function. While substrate stiffness can dictate cell differentiation lineage, migration, and self-organization, topographical features can change the cell's differentiation profile or migration ability. Although both physical cues are present and intrinsic to the native tissues in vivo, in vitro studies have been hampered by the lack of technological set-ups that would be compatible with cell culture and characterization. In vitro studies therefore either focused on screening stiffness effects in cells cultured on flat substrates or on determining topography effects in cells cultured onto hard materials. Here, we present a reliable, microfabrication method to obtain well defined topographical structures of micrometer size (5-10 mu m) on soft polyacrylamide hydrogels with tunable mechanical stiffness (3-145 kPa) that closely mimic the in vivo situation. Topographically microstructured polyacrylamide hydrogels are polymerized by capillary force lithography using flexible materials as molds. The topographical microstructures are resistant to swelling, can be conformally functionalized by ECM proteins and sustain the growth of cell lines (fibroblasts and myoblasts) and primary cells (mouse intestinal epithelial cells). Our method can independently control stiffness and topography, which allows to individually assess the contribution of each physical cue to cell response or to explore potential synergistic effects. We anticipate that our fabrication method will be of great utility in tissue engineering and biophysics, especially for applications where the use of complex in vivo-like environments is of paramount importance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据