4.4 Article

Development and validation of an empirical free energy function for calculating protein-protein binding free energy surfaces

期刊

BIOPHYSICAL CHEMISTRY
卷 139, 期 2-3, 页码 84-91

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bpc.2008.10.007

关键词

Free energy; Docking; Computational; Binding affinity; Scoring function; Protein-protein

向作者/读者索取更多资源

In a previous paper, we described a novel empirical free energy function that was used to accurately predict experimental binding free energies for a diverse test set of 31 protein-protein complexes to within approximate to 1.0 kcal. Here, we extend that work and show that an updated version of the function can be used to (1) accurately predict native binding free energies and (2) rank crystallographic, native-like and non-native binding modes in a physically realistic manner. The modified function includes terms designed to capture some of the unfavorable interactions that characterize non-native interfaces. The function was used to calculate one-dimensional binding free energy surfaces for 21 protein complexes. In roughly 90% of the cases tested, the function was used to place native-like and crystallographic binding modes in global free energy minima. Our analysis further suggests that buried hydrogen bonds might provide the key to distinguishing native from non-native interactions. To the best of our knowledge our function is the only one of its kind, a single expression that can be used to accurately calculate native and non-native binding free energies for a large number of proteins. Given the encouraging results presented in this paper, future work will focus on improving the function and applying it to the protein-protein docking problem. (C) 2008 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据