4.8 Article

Rapid online learning and robust recall in a neuromorphic olfactory circuit

期刊

NATURE MACHINE INTELLIGENCE
卷 2, 期 3, 页码 181-191

出版社

SPRINGERNATURE
DOI: 10.1038/s42256-020-0159-4

关键词

-

资金

  1. National Institute on Deafness and Other Communication Disorders [R01 DC014701, R01 DC014367]

向作者/读者索取更多资源

We present a neural algorithm for the rapid online learning and identification of odourant samples under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system. As with biological olfaction, the spike timing-based algorithm utilizes distributed, event-driven computations and rapid (one shot) online learning. Spike timing-dependent plasticity rules operate iteratively over sequential gamma-frequency packets to construct odour representations from the activity of chemosensor arrays mounted in a wind tunnel. Learned odourants then are reliably identified despite strong destructive interference. Noise resistance is further enhanced by neuromodulation and contextual priming. Lifelong learning capabilities are enabled by adult neurogenesis. The algorithm is applicable to any signal identification problem in which high-dimensional signals are embedded in unknown backgrounds. Integrating knowledge about the circuit-level organization of the brain into neuromorphic artificial systems is a challenging research problem. The authors present a neural algorithm for the learning of odourant signals and their robust identification under noise, based on the architecture of the mammalian olfactory bulb and implemented on the Intel Loihi neuromorphic system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据