4.1 Article

From preclinical to human - prediction of oral absorption and drug-drug interaction potential using physiologically based pharmacokinetic (PBPK) modeling approach in an industrial setting: a workflow by using case example

期刊

BIOPHARMACEUTICS & DRUG DISPOSITION
卷 33, 期 2, 页码 111-121

出版社

WILEY-BLACKWELL
DOI: 10.1002/bdd.1782

关键词

PBPK; DDI; absorption

向作者/读者索取更多资源

Purpose: A case example is presented in which the physiologically based modeling approach has been used to model the absorption of a lipophilic BCS Class II compound predominantly metabolized by CYP3A4, and to assess the interplay of absorption related parameters with the drug-drug interaction (DDI) potential. Methods: The PBPK model was built in the rat using Gastroplus W to study the absorption characteristics of the compound. Subsequently relevant model parameters were used to predict the non-linear human PK observed during first-in-human study after optimizing the absorption model for colonic absorption, bile micelle solubilization and unbound fraction in gut enterocytes (fugut) using SIMCYPW simulator. The model fitted absorption parameters were then used to assess the drug-drug interaction (DDI) potential of the test compound when administered along with multiple doses of a potent CYP 3A4 inhibitor, ketoconazole. The impact of fugut in the extent of DDI was assessed using parameter sensitivity analysis. Results and Conclusions: After optimizing the preclinical model and taking into consideration bile micelle solubilization and colonic absorption, the non-linear pharmacokinetics of the test compound was satisfactorily predicted in man. Sensitivity analysis performed with the absorption parameter fu(gut) indicated that it could be an important parameter in predicting oral absorption. In addition, DDI simulations using SIMCYP (R) suggest that C-max and AUC ratios may also be sensitive to the fu(gut) input in the model. Since fu(gut) cannot be measured experimentally, sensitivity analysis may help in assessing the importance of fu(gut) in human PK and DDI prediction using SIMCYP (R). Copyright (C) 2012 John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据