3.8 Article

A modeling informed quantitative approach to salvage clinical trials interrupted due to COVID-19

出版社

WILEY
DOI: 10.1002/trc2.12053

关键词

physiology-based pharmacokinetic modeling; protocol deviations; quantitative systems pharmacology

向作者/读者索取更多资源

Many ongoing Alzheimer's disease central nervous system clinical trials are being disrupted and halted due to the COVID-19 pandemic. They are often of a long duration' are very complex; and involve many stakeholders, not only the scientists and regulators but also the patients and their family members. It is mandatory for us as a community to explore all possibilities to avoid losing all the knowledge we have gained from these ongoing trials. Some of these trials will need to completely restart, but a substantial number can restart after a hiatus with the proper protocol amendments. To salvage the information gathered so far, we need out-of-the-box thinking for addressing these missingness problems and to combine information from the completers with those subjects undergoing complex protocols deviations and amendments after restart in a rational, scientific way. Physiology-based pharmacokinetic (PBPK) modeling has been a cornerstone of model-informed drug development with regard to drug exposure at the site of action, taking into account individual patient characteristics. Quantitative systems pharmacology (QSP), based on biology-informed and mechanistic modeling of the interaction between a drug and neuronal circuits, is an emerging technology to simulate the pharmacodynamic effects of a drug in combination with patient-specific comedications, genotypes, and disease states on functional clinical scales. We propose to combine these two approaches into the concept of computer modeling-based virtual twin patients as a possible solution to harmonize the readouts from these complex clinical datasets in a biologically and therapeutically relevant way.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据