4.7 Article

Sensing, Computing, and Communications for Energy Harvesting IoTs: A Survey

期刊

IEEE COMMUNICATIONS SURVEYS AND TUTORIALS
卷 22, 期 2, 页码 1222-1250

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/COMST.2019.2962526

关键词

Energy harvesting; Internet of Things; sensing; intermittent computing; energy harvesting communications

向作者/读者索取更多资源

With the growing number of deployments of Internet of Things (IoT) infrastructure for a wide variety of applications, the battery maintenance has become a major limitation for the sustainability of such infrastructure. To overcome this problem, energy harvesting offers a viable alternative to autonomously power IoT devices, resulting in a number of battery-less energy harvesting IoTs (or EH-IoTs) appearing in the market in recent years. Standards activities are also underway, which involve wireless protocol design suitable for EH-IoTs as well as testing procedures for various energy harvesting methods. Despite the early commercial and standards activities, IoT sensing, computing and communications under unpredictable power supply still face significant research challenges. This paper systematically surveys recent advances in EH-IoTs from several perspectives. First, it reviews the recent commercial developments for EH-IoT in terms of both products and services, followed by initial standards activities in this space. Then it surveys methods that enable the use of energy harvesting hardware as a proxy for conventional sensors to detect contexts in energy efficient manner. Next it reviews the advancements in efficient checkpointing and timekeeping for intermittently powered IoT devices. We also survey recent research in novel wireless communication techniques for EH-IoTs, such as the applications of reinforcement learning to optimize power allocations on-the-fly under unpredictable energy productions, and packet-less IoT communications and backscatter communication techniques for energy impoverished environments. The paper is concluded with a discussion of future research directions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据