4.6 Article

Enhanced visible light-active CeO2/CuO/Ag2CrO4 ternary heterostructures based on CeO2/CuO nanofiber heterojunctions for the simultaneous degradation of a binary mixture of dyes

期刊

NEW JOURNAL OF CHEMISTRY
卷 44, 期 13, 页码 5033-5048

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nj00173b

关键词

-

资金

  1. Iran National Science Foundation (INSF)
  2. Research Council of the Yasouj University [89111304]

向作者/读者索取更多资源

In the present work, a novel CeO2/CuO/Ag2CrO4 ternary nanocomposite based on CeO2/CuO fibers by loading Ag2CrO4 nanoparticles has been prepared using electrospinning, calcination and chemical precipitation methods. The samples were characterized by field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), Brunauer-Emmett-Teller (BET) method and Fourier-transform infrared spectroscopy (FT-IR). The as-obtained CeO2/CuO/Ag2CrO4 composite exhibited excellent photocatalytic performance in the photo-degradation of a mixture of Rose bengal (RB) and methylene blue (MB) in an aqueous solution under visible light (LED) irradiation. DRS analysis illustrated that the CeO2/CuO/Ag2CrO4 composite exhibited enhanced absorption in the visible region, which was attributed to the CeO2/CuO nanofibers. The as-synthesized photocatalyst demonstrated higher photocatalytic activities compared to the single CeO2/CuO nanofibers and Ag2CrO4 nanoparticles. Furthermore, the ternary composite exhibited the highest RB and MB photo-degradation rates of about 0.0299 and 0.0235 min(-1), respectively, at 300 rpm under visible light irradiation. The effect of four effective variables, namely, the initial concentrations of RB and MB, photocatalyst dosage, and irradiation time was studied and optimized using the central composite design. The kinetic studies confirmed the pseudo first order reaction based on the Langmuir-Hinshelwood model, while its rate constant (k(obs)) and L-H rate constant (k(r)) were 0.097 min(-1) and 5.773 mg L-1 min(-1) for RB and 0.0669 min(-1) and 2.017 mg L-1 for MB, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据