4.6 Article

In situ planar photoalignment of liquid crystals: two-step interfacial modifications through light-matter interactions actuated by linearly polarized UV-light

期刊

JOURNAL OF MATERIALS CHEMISTRY C
卷 8, 期 5, 页码 1722-1735

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9tc05607f

关键词

-

资金

  1. BK21 Plus Project through the National Research Foundation of Korea - Korea Government (MSIT)

向作者/读者索取更多资源

Photopolymerizable, photoisomerizable, photodimerizable and photoluminescent dichroic chromophores are deliberately designed and used for comprehending the sequential realization of the polyimide-free in situ photoalignment of liquid crystals (LCs). Upon a linearly polarized UV-light (LPUV) treatment, the multifunctional photoaligning additive, homogeneously dissolved in a LC mixture, is interfacially polymerized at the inner surfaces as a thin photo-responsive polymer layer. Subsequently, the molecular orientational anisotropy is induced by the dichroic photochromic responses, resulting in a uniaxial planar LC alignment. The reversible trans/cis-isomerization plays a crucial role for the LC alignment, rather than irreversible [2+2] dimerization. Therefore, the LC aligning effect is strongly influenced by the wavelengths of LPUV. Under the longer wavelength UV-irradiation (lambda > 350 nm), the reversible isomerization is more preferable to the irreversible dimerization, resulting in a rewritable LC alignment with much better alignment quality. Such sequential processes are evidenced by monitoring spatial and orientational distributions of the self-labeled dichroic fluorescent monomers during the process. The conclusions are further corroborated by the wavelength dependencies of the photochromic responses, LC aligning effect, and rewritable LC alignment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据