4.5 Article

Multi-modal biomarkers of low back pain: A machine learning approach

期刊

NEUROIMAGE-CLINICAL
卷 29, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.nicl.2020.102530

关键词

Low back pain; Cortical thickness; Resting state connectivity; Support vector machine; Pain processing; Emotion processing

资金

  1. Cervical Spine Research Society
  2. Neurosurgery Research and Education Foundation
  3. Barnes-Jewish Hospital Foundation

向作者/读者索取更多资源

Chronic low back pain (LBP) is a common health issue worldwide, but the lack of quantifiable metrics leads to imprecise treatments. This study found significant changes in brain structure and function in LBP patients, suggesting they may serve as potential biomarkers.
Chronic low back pain (LBP) is a very common health problem worldwide and a major cause of disability. Yet, the lack of quantifiable metrics on which to base clinical decisions leads to imprecise treatments, unnecessary surgery and reduced patient outcomes. Although, the focus of LBP has largely focused on the spine, the literature demonstrates a robust reorganization of the human brain in the setting of LBP. Brain neuroimaging holds promise for the discovery of biomarkers that will improve the treatment of chronic LBP. In this study, we report on morphological changes in cerebral cortical thickness (CT) and resting-state functional connectivity (rsFC) measures as potential brain biomarkers for LBP. Structural MRI scans, resting state functional MRI scans and selfreported clinical scores were collected from 24 LBP patients and 27 age-matched healthy controls (HC). The results suggest widespread differences in CT in LBP patients relative to HC. These differences in CT are correlated with self-reported clinical summary scores, the Physical Component Summary and Mental Component Summary scores. The primary visual, secondary visual and default mode networks showed significant age-corrected increases in connectivity with multiple networks in LBP patients. Cortical regions classified as hubs based on their eigenvector centrality (EC) showed differences in their topology within motor and visual processing regions. Finally, a support vector machine trained using CT to classify LBP subjects from HC achieved an average classification accuracy of 74.51%, AUC = 0.787 (95% CI: 0.66-0.91). The findings from this study suggest widespread changes in CT and rsFC in patients with LBP while a machine learning algorithm trained using CT can predict patient group. Taken together, these findings suggest that CT and rsFC may act as potential biomarkers for LBP to guide therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据