4.7 Article

Functional in vivo imaging of cysteine cathepsin activity in murine model of inflammation

期刊

BIOORGANIC & MEDICINAL CHEMISTRY
卷 19, 期 3, 页码 1055-1061

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2010.10.028

关键词

Solid-phase synthesis; Activity-based probe; Cysteine cathepsin; Zymosan; Inflammation; In vivo imaging

资金

  1. European Commission [LSHG-2006-018830]
  2. Slovenian Research Agency [P1-040]

向作者/读者索取更多资源

Near-infrared fluorophore (NIRF)-labeled imaging probes are becoming increasingly important in bio-molecular imaging applications, that is, in animal models for tumor imaging or inflammation studies. In this study we showed that the previously introduced chemical concept of 'Reverse Design' represents an efficient strategy for the generation of selective probes for cysteine proteases from chemically optimized protease inhibitors for investigations in proteomic lysates as well as for in vivo molecular imaging studies. The newly developed activity-based probe AW-091 was demonstrated to be highly selective for cathepsin S in vitro and proved useful in monitoring cysteine cathepsin activity in vivo, that is, in zymosan-induced mouse model of inflammation. AW-091 showed higher signal-to-background ratios at earlier time points than the commercially available polymer-based ProSense680 (VisEn Medical) and thus represents an efficient new tool for studying early proteolytic processes leading to various diseases, including inflammation, cancer, and rheumatoid arthritis. In addition, the fluorescent signal originating from the cleaved AW-091 was shown to be reduced by the administration of an anti-inflammatory drug, dexamethasone and by the cathepsin inhibitor E-64, providing a valuable system for the evaluation of small-molecule inhibitors of cathepsins. (C) 2010 Published by Elsevier Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据