4.7 Article

Structural and biochemical study on the inhibitory activity of derivatives of 5-nitro-furan-2-carboxylic acid for RNase H function of HIV-1 reverse transcriptase

期刊

BIOORGANIC & MEDICINAL CHEMISTRY
卷 19, 期 2, 页码 816-825

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2010.12.011

关键词

Antiviral drugs; HIV-1 reverse transcriptase; RNase H enzymatic activity; Inhibitors; Dual metal chelation; Nitro-furan carboxylic acid

资金

  1. Ministry of Health and Labor of Japan
  2. Japan Society for the Promotion of Science (JSPS)

向作者/读者索取更多资源

Rapid emergence of drug-resistant variants is one of the most serious problems in chemotherapy for HIV-1 infectious diseases. Inhibitors acting on a target not addressed by approved drugs are of great importance to suppress drug-resistant viruses. HIV-1 reverse transcriptase has two enzymatic functions, DNA polymerase and RNase H activities. The RNase H activity is an attractive target for a new class of antiviral drugs. On the basis of the hit chemicals found in our previous screening with 20,000 small molecular-weight compounds, we synthesized derivatives of 5-nitro-furan-2-carboxylic acid. Inhibition of RNase H enzymatic activity was measured in a biochemical assay with real-time monitoring of florescence emission from the digested RNA substrate. Several derivatives showed higher inhibitory activities that those of the hit chemicals. Modulation of the 5-nitro-furan-2-carboxylic moiety resulted in a drastic decrease in inhibitory potency. In contrast, many derivatives with modulation of other parts retained inhibitory activities to varying degrees. These findings suggest the binding mode of active derivatives, in which three oxygen atoms aligned in a straight form at the nitro-furan moiety are coordinated to two divalent metal ions located at RNase H reaction site. Hence, the nitro-furan-carboxylic moiety is one of the critical scaffolds for RNase H inhibition. Of note, the RNase H inhibitory potency of a derivative was improved by 18-fold compared with that of the original hit compound, and no significant cytotoxicity was observed for most of the derivatives showing inhibitory activity. Since there is still much room for modification of the compounds at the part opposite the nitro-furan moiety, further chemical conversion will lead to improvement of compound potency and specificity. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据