4.7 Article

Characterization of multivalent lactose quantum dots and its application in carbohydrate-protein interactions study and cell imaging

期刊

BIOORGANIC & MEDICINAL CHEMISTRY
卷 18, 期 14, 页码 5234-5240

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bmc.2010.05.046

关键词

Glycoquantum dots; NMR; SPR; Multivalency; 1-Thiol-lactose

资金

  1. Natural Science Foundation of China [90713004]
  2. State New Drug Innovation [2009ZX09103-044]
  3. State Key Laboratory of Natural and Biomimetic Drugs of Peking University

向作者/读者索取更多资源

We have previously reported a facile and convenient method for the preparation of a new type of lactose-CdSeS/ZnS quantum dots conjugates (Lac-QDs) that exhibit biocompatibility, noncytotoxicity and specificity to leukocytes. In order to further study the carbohydrate-protein interactions, a series of Lac-QDs with different lactose densities and a PEGylated (n = 3) lactose-QDs conjugate (LacPEG-QDs) with more flexible sugar ligands were prepared. The amount of the sugar molecules on QDs can be determined by NMR, which was in agreement with the results from TGA determination. The formula of the conjugates was determined with ICP-OES. The interactions between the conjugated QDs and the PNA protein were measured using SPR, which revealed that higher lactose density favored binding affinity under the same concentration, and Lac-QDs exhibit higher affinity than LacPEG-QDs. We further used a solid phase assay to assess the anti-adhesion activity of Lac-QDs and LacPEG-QDs on the cell level. The results showed that Lac-QDs had stronger activity in preventing THP1 from adhering to HUVEC than LacPEGQDs, which was consistent with the SPR results. We reasoned that decrease in the conformational entropy induced by appropriate restriction of sugar flexibility could enhance the binding affinity of glyco-QDs, which implies that entropy change may be the main contributor to the interaction between high valent glyco-QDs and protein. The fabrication of lactose on QDs provides a fluorescent multivalent carbohydrate probe that can be used as mimics of glycoprotein for the study of carbohydrate-protein interactions and cell imaging. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据