4.7 Review

Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: A review

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.jece.2020.104743

关键词

Hydrodynamic cavitation; Ultrasound; Biological oxidation; Wastewater sludge; Anaerobic digestion

向作者/读者索取更多资源

Cavitation-based pre-treatment processes can improve the efficiency of biological treatment, with notable benefits such as reduction in COD for wastewater and enhanced biodegradability index. Additionally, for sludge, it can lead to smaller particle sizes, increased soluble COD and disintegration, and higher biomethane production potential.
Long treatment times, large quantity of sludge generation, inhibition of micro-organisms and inability to degrade refractory pollutants are common disadvantages of biological treatment processes. Cavitation-based pre-treatment processes can enhance the treatment efficiency of biological treatment including aerobic oxidation and anaerobic digestion. This work presents a critical review on cavitation-based pre-treatment for subsequent biological oxidation process as well as for the treatment and modification of waste sludge for subsequent anaerobic digestion. For wastewater pre-treatment, important metrics to be assessed are COD reduction, and biodegradability index enhancement. In several studies, a BI improvement up to 50-60 % has been observed with cavitation. For sludge pre-treatment, particle size reduction, soluble COD and degree of disintegration (DDCOD) increase, and enhancement of biomethane production potential as the performance metrics have been reviewed. The effect of several process parameters like ultrasound power, hydrodynamic cavitation pressure and geometry, time, and pH are critically reviewed and compared for various studies. Improvements in treatment times, higher enzymatic digestibility, removal of refractory pollutants, and lower inhibition in the biological processes were observed as the key advantages due to the use of cavitation. Optimum cavitation numbers for efficient pre-treatment using hydrodynamic cavitatio lie between 0.05 and 0.15. It is observed that low hydrodynamic pressures are the most advantageous for sludge disintegration and also the process is highly time dependent. Cavitation, especially the hydrodynamic mode, is demonstrated as an economically feasible advanced oxidation-pretreatment for sludge modification and biological oxidation processes leading ultimately to an 'energy-positive system'. Future studies in this context should mainly focus on the development of continuous flow-pilot scale systems that can be subsequently considered applicable commercially.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据