4.8 Article

Faecal microbiota transplantation halts progression of human new-onset type 1 diabetes in a randomised controlled trial

期刊

GUT
卷 70, 期 1, 页码 92-105

出版社

BMJ PUBLISHING GROUP
DOI: 10.1136/gutjnl-2020-322630

关键词

-

资金

  1. AMC MD PhD fellowship grant
  2. EFSD/JDRF/Lilly 2017
  3. Netherlands Organization for Scientific Research (Spinoza Award)
  4. ZONMW--VIDI grant 2013 [016.146.327]

向作者/读者索取更多资源

This study found that fecal microbiota transplantation can help delay disease progression and protect pancreatic function in patients with type 1 diabetes. Certain plasma metabolites and bacterial strains are associated with preserved residual beta cell function. The gut microbiome plays a crucial role in the pathophysiology of T1D.
Objective Type 1 diabetes (T1D) is characterised by islet autoimmunity and beta cell destruction. A gut microbiota-immunological interplay is involved in the pathophysiology of T1D. We studied microbiota-mediated effects on disease progression in patients with type 1 diabetes using faecal microbiota transplantation (FMT). Design Patients with recent-onset (<6 weeks) T1D (18-30 years of age) were randomised into two groups to receive three autologous or allogenic (healthy donor) FMTs over a period of 4 months. Our primary endpoint was preservation of stimulated C peptide release assessed by mixed-meal tests during 12 months. Secondary outcome parameters were changes in glycaemic control, fasting plasma metabolites, T cell autoimmunity, small intestinal gene expression profile and intestinal microbiota composition. Results Stimulated C peptide levels were significantly preserved in the autologous FMT group (n=10 subjects) compared with healthy donor FMT group (n=10 subjects) at 12 months. Small intestinal Prevotella was inversely related to residual beta cell function (r=-0.55, p=0.02), whereas plasma metabolites 1-arachidonoyl-GPC and 1-myristoyl-2-arachidonoyl-GPC levels linearly correlated with residual beta cell preservation (rho=0.56, p=0.01 and rho=0.46, p=0.042, respectively). Finally, baseline CD4 +CXCR3+T cell counts, levels of small intestinal Desulfovibrio piger and CCL22 and CCL5 gene expression in duodenal biopsies predicted preserved beta cell function following FMT irrespective of donor characteristics. Conclusion FMT halts decline in endogenous insulin production in recently diagnosed patients with T1D in 12 months after disease onset. Several microbiota-derived plasma metabolites and bacterial strains were linked to preserved residual beta cell function. This study provides insight into the role of the intestinal gut microbiome in T1D.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据