4.6 Article

Internalization of Tissue Factor-Rich Microvesicles by Platelets Occurs Independently of GPIIb-IIIa, and Involves CD36 Receptor, Serotonin Transporter and Cytoskeletal Assembly

期刊

JOURNAL OF CELLULAR BIOCHEMISTRY
卷 117, 期 2, 页码 448-457

出版社

WILEY
DOI: 10.1002/jcb.25293

关键词

PLATELETS; TISSUE FACTOR; CELL-DERIVED MICROPARTICLES; CYTOSKELETON; INTERNALIZATION

资金

  1. Instituto de Salud Carlos III (ISCIII)-Fondo de Investigacion Sanitaria
  2. European Regional Development Funds (FEDER) [FIS-PI13/00517]
  3. Instituto de Salud Carlos III (ISCIII)-Cardiovascular Research Net (RIC)
  4. Instituto de Salud Carlos III (ISCIII)-Proyectos Integrados de Excelencia en los IIS [PI15/00027]
  5. Ministerio de Economia y Competitividad [SAF2011-28214]
  6. [RD12/0042/0016]
  7. [RD12/0042/0006]

向作者/读者索取更多资源

Platelets are important in hemostasis, but also detect particles and pathogens in the circulation. Phagocytic and endocytic activities of platelets are widely recognized; however, receptors and mechanisms involved remain poorly understood. We previously demonstrated that platelets internalize and store phospholipid microvesicles enriched in human tissue factor (TF+MVs) and that platelet-associated TF enhances thrombus formation at sites of vascular damage. Here, we investigate the mechanisms implied in the interactions of TF+MVs with platelets and the effects of specific inhibitory strategies. Aggregometry and electron microscopy were used to assess platelet activation and TF+MVs uptake. Cytoskeletal assembly and activation of phosphoinositide 3-kinase (PI3K) and RhoA were analyzed by western blot and ELISA. Exposure of platelets to TF+MVs caused reversible platelet aggregation, actin polymerization and association of contractile proteins to the cytoskeleton being maximal at 1 min. The same kinetics were observed for activation of PI3K and translocation of RhoA to the cytoskeleton. Inhibitory strategies to block glycoprotein IIb-IIIa (GPIIb-IIIa), scavenger receptor CD36, serotonin transporter (SERT) and PI3K, fully prevented platelet aggregation by TF+MVs. Ultrastructural techniques revealed that uptake of TF+MVs was efficiently prevented by anti-CD36 and SERT inhibitor, but only moderately interfered by GPIIb-IIIa blockade. We conclude that internalization of TF+MVs by platelets occurs independently of receptors related to their main hemostatic function (GPIIb-IIIa), involves the scavenger receptor CD36, SERT and engages PI3-Kinase activation and cytoskeletal assembly. CD36 and SERT appear as potential therapeutic targets to interfere with the association of TF+MVs with platelets and possibly downregulate their prothrombotic phenotype. (C) 2015 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据