4.8 Article

Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics

期刊

BIOSENSORS & BIOELECTRONICS
卷 212, 期 -, 页码 -

出版社

ELSEVIER ADVANCED TECHNOLOGY
DOI: 10.1016/j.bios.2022.114418

关键词

Flexible electronics; Machine learning; Sensors; E-jet printing; Graphene

资金

  1. National Science Foundation [2014346]
  2. Army Research Office [W911NF-18-1-0412]

向作者/读者索取更多资源

The study focused on the electrical conductivity of E-jet printed circuits as a function of key printing parameters, using a machine learning algorithm to establish models capable of predicting the characteristics of the printed circuits in real-time. Random forest and K-NN model (k = 10) were identified as the best methods for classifying the conductivity of electrodes.
Electrohydrodynamic-jet (E-jet) printing technique enables the high-resolution printing of complex soft electronic devices. As such, it has an unmatched potential for becoming the conventional technique for printing soft electronic devices. In this study, the electrical conductivity of the E-jet printed circuits was studied as a function of key printing parameters (nozzle speed, ink flow rate, and voltage). The collected experimental dataset was then used to train a machine learning algorithm to establish models capable of predicting the characteristics of the printed circuits in real-time. A decision tree was applied to the data set and resulted in an accuracy of 0.72, and further evaluations showed that pruning the tree increased the accuracy while sensitivity decreased in the highly pruned trees. The k-fold cross-validation (CV) method was used in model selection to test the ability of the model to get trained on data. The accuracy of CV method was the highest for random forest at 0.83 and K-NN model (k = 10) at 0.82. Precision parameters were compared to evaluate the supervised classification models. According to F-measure values, the K-NN model (k = 10) and random forest are the best methods to classify the conductivity of electrodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据