4.5 Article

Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles

期刊

BIOMICROFLUIDICS
卷 6, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4747166

关键词

-

资金

  1. Technology Foundation STW
  2. Applied Science Division of NWO
  3. Technology Program of the Ministry of Economic Affairs, The Netherlands

向作者/读者索取更多资源

We present an ultrasonic device with the ability to locally remove deposited layers from a glass slide in a controlled and rapid manner. The cleaning takes place as the result of cavitating bubbles near the deposited layers and not due to acoustic streaming. The bubbles are ejected from air-filled cavities micromachined in a silicon surface, which, when vibrated ultrasonically at a frequency of 200 kHz, generate a stream of bubbles that travel to the layer deposited on an opposing glass slide. Depending on the pressure amplitude, the bubble clouds ejected from the micropits attain different shapes as a result of complex bubble interaction forces, leading to distinct shapes of the cleaned areas. We have determined the removal rates for several inorganic and organic materials and obtained an improved efficiency in cleaning when compared to conventional cleaning equipment. We also provide values of the force the bubbles are able to exert on an atomic force microscope tip. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4747166]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据