4.5 Article

A microfluidic device for on-chip agarose microbead generation with ultralow reagent consumption

期刊

BIOMICROFLUIDICS
卷 6, 期 4, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4758460

关键词

biochemistry; biological techniques; bioMEMS; DNA; microfluidics; microreactors; molecular biophysics

资金

  1. CNRS
  2. Grants-in-Aid for Scientific Research [11F01720] Funding Source: KAKEN

向作者/读者索取更多资源

Water-in-oil microdroplets offer microreactors for compartmentalized biochemical reactions with high throughput. Recently, the combination with a sol-gel switch ability, using agarose-in-oil microdroplets, has increased the range of possible applications, allowing for example the capture of amplicons in the gel phase for the preservation of monoclonality during a PCR reaction. Here, we report a new method for generating such agarose-in-oil microdroplets on a microfluidic device, with minimized inlet dead volume, on-chip cooling, and in situ monitoring of biochemical reactions within the gelified microbeads. We used a flow-focusing microchannel network and successfully generated agarose microdroplets at room temperature using the push-pull method. This method consists in pushing the oil continuous phase only, while suction is applied to the device outlet. The agarose phase present at the inlet is thus aspirated in the device, and segmented in microdroplets. The cooling system consists of two copper wires embedded in the microfluidic device. The transition from agarose microdroplets to microbeads provides additional stability and facilitated manipulation. We demonstrate the potential of this method by performing on-chip a temperature-triggered DNA isothermal amplification in agarose microbeads. Our device thus provides a new way to generate microbeads with high throughput and no dead volume for biochemical applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4758460]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据