4.5 Article

Spatio-temporal analysis of tamoxifen-induced bystander effects in breast cancer cells using microfluidics

期刊

BIOMICROFLUIDICS
卷 6, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4726349

关键词

biomembranes; bioMEMS; cancer; cellular biophysics; drugs; laminar flow; microfluidics; spatiotemporal phenomena; tumours

资金

  1. Research Council of Norway [182093]
  2. UiB Nano
  3. Helse Vest-Samarbeidsorganet [911623]

向作者/读者索取更多资源

The bystander effect in cancer therapy is the inhibition or killing of tumor cells that are adjacent to those directly affected by the agent used for treatment. In the case of chemotherapy, little is known as to how much and by which mechanisms bystander effects contribute to the elimination of tumor cells. This is mainly due to the difficulty to distinguish between targeted and bystander cells since both are exposed to the pharmaceutical compound. We here studied the interaction of tamoxifen-treated human breast cancer MCF-7 cells with their neighboring counterparts by exploiting laminar flow patterning in a microfluidic chip to ensure selective drug delivery. The spatio-temporal evolution of the bystander response in non-targeted cells was analyzed by measuring the mitochondrial membrane potential under conditions of free diffusion. Our data show that the bystander response is detectable as early as 1 hour after drug treatment and reached effective distances of at least 2.8 mm. Furthermore, the bystander effect was merely dependent on diffusible factors rather than cell contact-dependent signaling. Taken together, our study illustrates that this microfluidic approach is a promising tool for screening and optimization of putative chemotherapeutic drugs to maximize the bystander response in cancer therapy. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4726349]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据