4.5 Article

Optofluidic characterization of marine algae using a microflow cytometer

期刊

BIOMICROFLUIDICS
卷 5, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3608136

关键词

band-pass filters; biological techniques; bioMEMS; bio-optics; fluorescence; light scattering; marine pollution; microchannel flow; microorganisms; molecular biophysics; optical fibres; optical filters; photomultipliers; proteins

资金

  1. ONR/NRL

向作者/读者索取更多资源

The effects of global warming, pollution in river effluents, and changing ocean currents can be studied by characterizing variations in phytoplankton populations. We demonstrate the design and fabrication of a Microflow Cytometer for characterization of phytoplankton. Guided by chevron-shaped grooves on the top and bottom of a microfluidic channel, two symmetric sheath streams wrap around a central sample stream and hydrodynamically focus it in the center of the channel. The lasers are carefully chosen to provide excitation light close to the maximum absorbance wavelengths for the intrinsic fluorophores chlorophyll and phycoerythrin, and the excitation light is coupled to the flow cytometer through the use of an optical fiber. Fluorescence and light scatter are collected using two multimode optical fibers placed at 90-degree angles with respect to the excitation fiber. Light emerging from these collection fibers is directed through optical bandpass filters into photomultiplier tubes. The cytometer measured the optical and side scatter properties of Karenia b., Synechococcus sp., Pseudo-Nitzchia, and Alexandrium. The effect of the sheath-to-sample flow-rate ratio on the light scatter and fluorescence of these marine microorganisms was investigated. Reducing the sample flow rate from 200 mu L/min to 10 mu L/min produced a more tightly focused sample stream and less heterogeneous signals. (C) 2011 American Institute of Physics. [doi:10.1063/1.3608136]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据