4.5 Article

A microdevice for the creation of patent, three-dimensional endothelial cell-based microcirculatory networks

期刊

BIOMICROFLUIDICS
卷 5, 期 3, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.3609264

关键词

biomedical optical imaging; bioMEMS; biomimetics; blood vessels; cellular biophysics; fluorescence spectroscopy; microfluidics; optical microscopy; surface chemistry; tissue engineering

资金

  1. Australian Research Council (ARC)

向作者/读者索取更多资源

Microvascular network formation is a significant and challenging goal in the engineering of large three-dimensional artificial tissue structures. We show here the development of a fully patent, 3D endothelial cell (microvascular) microfluidic network that has a single inlet and outlet, created in only 28 h in a microdevice involving fluid flow equivalent to natural vasculature. Our microdevice features a tailored multi-rung ladder network, a stylized mimic of an arterial-to-venous pedicle, designed to also allow for systematic and reproducible cell seeding. Immunofluorescence staining revealed a highly contiguous endothelial monolayer (human umbilical vein endothelial cells) throughout the whole network after 24 h of continuous perfusion. This network persisted for up to 72 h of culture, providing a useful template from which the effects of surface chemistry, fluid flow, and environmental conditions on the development of artificial vascular networks ex vivo may be rapidly and robustly evaluated. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3609264]

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据