4.3 Article

Mathematical Modelling and Torque Ripple Waning in BLDC Motor Using Outgoing-Phase Current Discharge Hysteresis Controlled ANFIS Controller

期刊

MATHEMATICAL PROBLEMS IN ENGINEERING
卷 2022, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2022/3971695

关键词

-

向作者/读者索取更多资源

This study focused on reducing torque ripples in PMBLDC motors by using PI, FLC, and ANFIS controllers, and proposed a simple control approach based on OGCDHC.
This study focused on approaches for reducing torque ripples in Permanent Magnet Brushless Direct current motors (PMBLDC) to provide sophisticated performance and reliable machine drives for both industrial and consumer applications. Torque ripples are caused by current ripple, nonsinusoidal Back Electromotive Force (EMF), and cogging torque at the Brushless Direct Current Motor (BLDCM) output. Acoustic emissions are produced when the torque ripple creates vibrations in the mechanical system, which interacts with the motor housing and reduces the life span of the motor. The BLDC's uses are limited due to these acoustic emissions. Proportional-Integral (PI), Fuzzy Logic Control (FLC), and Adaptive Neuro-Fuzzy Inference System (ANFIS) speed controller approaches were used to construct and analyze the mathematical model of the BLDC motor in the MATLAB environment. The Adaptive Neurofuzzy Inference System (ANFIS) speed control system has solved the shortcomings of the PI and Fuzzy Logic Control (FLC) techniques. Because of FLC interpolation and flexibility, ANFIS is one of the finest trade-offs between neural and fuzzy systems, allowing for smooth control. Model compactness, a smaller training set, and faster convergence are all benefits of the ANFIS approach over traditional feedforward NN. In this research proposal, a simple control approach based on outgoing phase current discharge hysteresis control (OGCDHC) with minimal torque ripple is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据