4.7 Article

Detecting vinyl chloride by phytoscreening in the shallow critical zone at sites with potential human exposure

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 319, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2022.115776

关键词

Phytoscreening; Vinyl chloride; Chlorinated ethenes; Critical zone; Vapor intrusion

向作者/读者索取更多资源

Chlorinated ethene contaminants, particularly vinyl chloride (VC), pose a significant risk due to their mobility, persistence, and carcinogenicity. Traditional methods of assessing soil vapor intrusion risk may not effectively detect lower chlorinated VC, but phytoscreening has shown promise as a cost-effective alternative for indirectly detecting shallow underground contamination by higher chlorinated ethenes. This study demonstrated the efficacy of phytoscreening in detecting VC in trees near contaminated sites, challenging existing assumptions about its detectability and highlighting the potential for more effective screening compared to traditional soil gas methods.
Chlorinated ethene (CE) contaminants are widespread in groundwater, and the occurrence of vinyl chloride (VC), among others, is a well-known issue due to its mobility, persistence, and carcinogenicity. Human exposure to VC may occur through inhalation after soil vapor intrusion into buildings at sites with shallow underground contamination. Soil vapor intrusion risk is traditionally assessed through indoor air and sub-slab sampling (direct evidence) or soil gas and groundwater surveys (indirect evidence). Phytoscreening (sampling and analysis of tree trunk matrices) was proven as a cost-effective alternative technique to indirectly detect shallow underground contamination by higher chlorinated ethenes and subsequent vapor intrusion risk. However, the technique has appeared barely capable to screen for the lower chlorinated VC, likely due to its fugacity and aerobic bio-degradability, with only one literature record to date showing successful detection in trees. We applied phyto-screening at two sites with severe CE contamination nearby residential buildings caused by illegal dumping of chlorinated pitches from petrochemical productions. The two sites show variable amounts of VC in the shallow groundwater (1e2 to 1e4 mu g/L), posing potential sanitary risk issues. Former soil gas surveys did not detect VC in the vadose zone. At both sites, we sampled trunk micro-cores and trunk gas from poplar trees close to contaminated piezometers in different seasons. VC was detected in several instances, disproving the shared literature assumption of the inefficacy of phytoscreening towards this compound. Factors influencing the detectability of VC and other CEs in trees were analyzed through linear regressions. Two different conceptual models were proposed to explain the effective uptake of VC by trees at the two sites, i.e., direct uptake of contaminated groundwater at the first site and uptake of VC from an anoxic vadose zone at the second site. In planta reductive dechlorination of CEs is not expected based on current literature knowledge. Thus, the detection of VC in trunks would indicate its occurrence in the shallow underground, suggesting higher screening effec-tiveness of phytoscreening compared to soil gas; this has implications for indirect vapor intrusion risk assessment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据