4.5 Article

Mixed-Effects State-Space Models for Analysis of Longitudinal Dynamic Systems

期刊

BIOMETRICS
卷 67, 期 2, 页码 476-485

出版社

WILEY
DOI: 10.1111/j.1541-0420.2010.01485.x

关键词

EM algorithm; Gibbs sampler; Kalman filter; Mixed-effects models; Parameter estimation; State-space models

资金

  1. NIAID/NIH [AI078842, AI078498, AI50020, AI087135]

向作者/读者索取更多资源

The rapid development of new biotechnologies allows us to deeply understand biomedical dynamic systems in more detail and at a cellular level. Many of the subject-specific biomedical systems can be described by a set of differential or difference equations that are similar to engineering dynamic systems. In this article, motivated by HIV dynamic studies, we propose a class of mixed-effects state-space models based on the longitudinal feature of dynamic systems. State-space models with mixed-effects components are very flexible in modeling the serial correlation of within-subject observations and between-subject variations. The Bayesian approach and the maximum likelihood method for standard mixed-effects models and state-space models are modified and investigated for estimating unknown parameters in the proposed models. In the Bayesian approach, full conditional distributions are derived and the Gibbs sampler is constructed to explore the posterior distributions. For the maximum likelihood method, we develop a Monte Carlo EM algorithm with a Gibbs sampler step to approximate the conditional expectations in the E-step. Simulation studies are conducted to compare the two proposed methods. We apply the mixed-effects state-space model to a data set from an AIDS clinical trial to illustrate the proposed methodologies. The proposed models and methods may also have potential applications in other biomedical system analyses such as tumor dynamics in cancer research and genetic regulatory network modeling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据