4.8 Article

A short Fe-Fe distance in peroxodiferric ferritin: Control of Fe substrate versus cofactor decay?

期刊

SCIENCE
卷 287, 期 5450, 页码 122-125

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.1126/science.287.5450.122

关键词

-

资金

  1. NIGMS NIH HHS [GM-58778, GM-45205, GM-47295] Funding Source: Medline

向作者/读者索取更多资源

The reaction of oxygen with protein diiron sites is important in bioorganic syntheses and biomineralization. An unusually short Fe-Fe distance of 2.53 angstroms was found in the diiron (mu-1,2 peroxodiferric) intermediate that forms in the early steps of ferritin biomineralization. This distance suggests the presence of a unique triply bridged structure. The Fe-Fe distances in the mu-1,2 peroxodiferric complexes that were characterized previously are much longer (3.1 to 4.0 angstroms). The 2.53 angstrom Fe-Fe distance requires a small Fe-O-O angle (similar to 106 degrees to 107 degrees). This geometry should favor decay of the peroxodiferric complex by the release of H2O2 and mu-oxo or mu-hydroxo diferric biomineral precursors rather than by oxidation of the organic substrate. Geometrical differences may thus explain how diiron sites can function either as a substrate (in ferritin biomineralization) or as a cofactor (in O-2 activation).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据