4.5 Article

Modulation of glial activation by astrocyte-derived protein S100B: differential responses of astrocyte and microglial cultures

期刊

BRAIN RESEARCH
卷 853, 期 1, 页码 74-80

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(99)02251-9

关键词

S100; astrocyte; microglia; nitric oxide; site-directed mutagenesis; cytokine

资金

  1. NIA NIH HHS [AG13939] Funding Source: Medline

向作者/读者索取更多资源

The astrocyte-derived protein S100B stimulates production of inducible nitric oxide synthase and nitric oxide (NO) in astrocytes [Hu et al., 1996, J. Biol. Chem. 271:2543], but its effect on microglia is not known. In addition, S100B's ability to modulate the activity of other glial activating agents has not been defined. In this study, we compared the ability of S100B to stimulate NO in cultures of rat primary astrocytes and the BV-2 murine microglial cell line, and investigated the effect of the combined action of S100B and other stimuli known to activate glial cells. S100B itself stimulated the production of NO in astrocytes, and did not modify or potentiated only weakly the NO production induced by interleukin-l beta, tumor necrosis factor alpha, dibutyryl cyclic AMP, zymosan A or lipid A. In contrast, S100B alone did not induce NO in BV-2 cells but strongly potentiated NO production in the presence of lipid A but not zymosan A. The deletion of eight C-terminal amino acid residues in S100B leads to a loss of the effect of S100B on microglia but not on astrocytes. These results demonstrate that responses of glial cells to extracellular S100B can vary depending on the cell type, and suggest that different structural features of S100B are important for the protein's effects on microgolia and astrocytes. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据