4.8 Article

Dynamics of supercooled water in confined geometry

期刊

NATURE
卷 403, 期 6767, 页码 283-286

出版社

MACMILLAN MAGAZINES LTD
DOI: 10.1038/35002027

关键词

-

向作者/读者索取更多资源

As with most liquids, it is possible to supercool(1-4) water; this generally involves cooling the liquid below its melting temperature I(avoiding crystallization) until it eventually forms a glass. The viscosity and related relaxation times (tau) of glass-forming liquids typically show non-Arrhenius temperature (T) dependencies: Liquids with highly non-Arrhenius behaviour in the supercooled region are termed 'fragile', In contrast, liquids whose behaviour is close to the Arrhenius law (ln tau proportional to 1/T) are termed 'strong' (ref. 5). A unique 'fragile-strong' transition around 228 K has been proposed(6) for supercooled water; however, experimental studies of hulk supercooled water in this temperature range are generally hampered because crystallization occurs. Here we use broad-band dielectric spectroscopy to study the relaxation dynamics of supercooled water in a wide temperature range, including the usually inaccessible temperature region. This is possible because the supercooled water is held within a layered vermiculite clay-the geometrical confinement and presence of intercalated sodium ions prevent(7) most of the water from crystallizing. We find a relaxational process with an Arrhenius temperature dependence, consistent with the proposed strong nature of deeply supercooled bulk water. Because water that is less supercooled has been established(6) as highly fragile, our results support the existence of a fragile-strong transition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据