4.5 Article

Human centromeres and neocentromeres show identical distribution patterns of >20 functionally important kinetochore-associated proteins

期刊

HUMAN MOLECULAR GENETICS
卷 9, 期 2, 页码 175-185

出版社

OXFORD UNIV PRESS
DOI: 10.1093/hmg/9.2.175

关键词

-

向作者/读者索取更多资源

Using combined immunofluorescence and fluorescence in situ hybridization (FISH) analysis we have extensively characterized the proteins associating with two different homologue human neocentromeres at interphase and prometaphase/metaphase, and compared these directly with those found with normal human centromeres. Antisera to CENP-A, CENP-B, CENP-C, CENP-E, CENP-F, INCENP, CLIP-170, dynein, dynactin subunits p150(Glued) and Arp1, MCAK, Tsg24, p55CDC, HZW10, HBUB1, HBUBR1, BUB3, MAD2, ERK1, 3F3/2, topoisomerase II and a murine HP1 homologue, M31, were used in immunofluorescence experiments in conjunction with FISH employing specific DNA probes to clearly identify neocentromeric DNA. We found that except for the total absence of CENP-B binding, neocentromeres are indistinguishable from their alpha satellite-containing counterparts in terms of protein composition and distribution. This suggests that the DNA base of a potential centromeric locus is of minimal importance in determining the overall structure of a functional kinetochore and that, once seeded, the events leading to functional kinetochore formation occur independently of primary DNA sequence.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据