4.5 Article

Intracerebral transportation and cellular localisation of insulin-like growth factor-1 following central administration to rats with hypoxic-ischemic brain injury

期刊

BRAIN RESEARCH
卷 853, 期 2, 页码 163-173

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/S0006-8993(99)02030-2

关键词

IGF-1; translocation; ischemia; apoptosis; intracerebroventricular infusion; brain

向作者/读者索取更多资源

Insulin-like growth factor-1 (IGF-1) has been shown to be neuroprotective when administered centrally following hypoxic-ischemic (HI) brain injury. However, the cerebral distribution and site of action of IGF-1 after intracerebroventricular (i.c.v.) administration are not known. A unilateral HI brain injury was induced in adult rats by a modified Levine method. Either H-3-IGF-1 alone, or in combination with unlabelled IGF-1, was administered into the lateral ventricle 2 h after injury. The activity of 3H-IGF-1 signal in the potentially injured cortex was compared between two treatment groups using image analysis. The regional distribution and cellular localisation of H-3-IGF-1 were examined autoradiographically in potentially injured hemispheres at 0.5 and 6 h after administration. Tritiated IGF-1 was detected predominantly in the pia mater, perivascular spaces and subcortical white matter tracts 0.5 h after administration and decreased by 6 h (p < 0.05). The signals associated with the perivascular spaces and pia mater were not blocked by unlabelled IGF-1, suggesting non-saturable binding in these brain areas. IGF-1 signal was co-localised with IGF binding protein (IGFBP)-2 immunostaining in the white matter tracts where the signal was blocked by unlabelled IGF-1, suggesting competitive association. IGF-1 signal associated with neurons and glia was maximal in the cerebral cortex and less in the CA1-2 subregion of the hippocampus which were blocked by unlabelled IGF-1 (p < 0.05). The signals from cortical neurons did not decrease 6 h after administration, suggesting specific and persistent binding to these cells. Our results indicate that centrally administered IGF-1 can be translocated to neurons and glia via the perivascular circulation and the ependymal cell-white matter tract pathways. (C) 2000 Elsevier Science B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据