4.7 Article

An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows

期刊

JOURNAL OF FLUID MECHANICS
卷 403, 期 -, 页码 89-132

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0022112099007004

关键词

-

向作者/读者索取更多资源

Some new developments of explicit algebraic Reynolds stress turbulence models (EARSM) are presented. The new developments include a new near-wall treatment ensuring realizability for the individual stress components, a formulation for compressible flows, and a suggestion for a possible approximation of diffusion terms in the anisotropy transport equation. Recent developments in this area are assessed and collected into a model for both incompressible and compressible three-dimensional wall-bounded turbulent flows. This model represents a solution of the implicit ARSM equations, where the production to dissipation ratio is obtained as a solution to a nonlinear algebraic relation. Three-dimensionality is fully accounted for in the mean flow description of the stress anisotropy. The resulting EARSM has been found to be well suited to integration to the wall and all individual Reynolds stresses can be well predicted by introducing wall damping functions derived from the van Driest damping function. The platform for the model consists of the transport equations for the kinetic energy and an auxiliary quantity. The proposed model can be used with any such platform, and examples are shown for two different choices of the auxiliary quantity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据