4.3 Article

Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system

期刊

BIOMETALS
卷 26, 期 1, 页码 61-73

出版社

SPRINGER
DOI: 10.1007/s10534-012-9594-y

关键词

Organoselenium; Cisplatin; Nephrotoxicity; Reactive oxygen species; Antioxidant enzyme system; DNA damage

资金

  1. CSIR [01(2160)/07/EMR II]

向作者/读者索取更多资源

Cisplatin is one of the most active cytotoxic agents used in the treatment of cancer. However, cisplatin therapy is also associated with severe side effects like nephrotoxicity and genotoxicity. Free oxygen radicals are known to play a major role in cisplatin induced toxicities. Selenium is believed to be an important trace element and dietary antioxidant because of its ability to scavenge free oxygen radicals, thereby preventing cells from oxidative stress. The purpose of this study is to evaluate the protective role of a novel naphthalimide based organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione against cisplatin induced toxicities in Swiss albino mice. Cisplatin was administered intraperitoneally (5 mg/kg b.w.) and the organoselenium compound was given by oral gavages (3 mg/kg b.w.) in concomitant and pretreatment schedule. The results showed that the test compound substantially reduced cisplatin induced reactive oxygen species generation and lipid peroxidation in kidney as well as blood urea nitrogen and creatinine levels in serum. Treatment with organoselenium compound was also able to restore the renal antioxidant system by modulating the cisplatin induced depleted activities of glutathione S-transferase, thioredoxin reductase, superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione level. In addition, the organoselenium compound could efficiently minimize cisplatin induced chromosomal aberrations in bone marrow cells and extent of DNA damage in lymphocytes. Furthermore, the chemoprotective efficacy of the compound against cisplatin induced toxicity was confirmed by histopathological evaluation. The results suggest that the organoselenium compound has the potential to protect against cisplatin induced nephrotoxicity and genotoxicity in part by scavenging reactive oxygen species and by up regulating the antioxidant enzyme system.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据