4.3 Article

Mechanisms in cadmium-induced carcinogenicity: recent insights

期刊

BIOMETALS
卷 23, 期 5, 页码 951-960

出版社

SPRINGER
DOI: 10.1007/s10534-010-9330-4

关键词

Cadmium; DNA repair; Gene expression; Cell cycle control; Apoptosis; Genomic instability

资金

  1. Deutsche Forschungsgemeinschaft
  2. BWPLUS

向作者/读者索取更多资源

Cadmium is an environmental pollutant, with relevant exposures at workplaces and in the general population. The carcinogenicity has been long established, most evident for tumors in the lung and kidney, but with increasing evidence also for other tumor locations. While direct interactions with DNA appear to be of minor importance, the interference with the cellular response to DNA damage, the deregulation of cell growth as well as resistance to apoptosis have been demonstrated in diverse experimental systems. With respect to DNA repair processes, cadmium has been shown to disturb nucleotide excision repair, base excision repair and mismatch repair; consequences are increased susceptibility towards other DNA damaging agents and endogenous mutagens. Furthermore, cadmium induces cell proliferation, inactivates negative growth stimuli, such as the tumor suppressor protein p53, and provokes resistance towards apoptosis. Particularly the combination of these multiple mechanisms may give rise to a high degree of genomic instability in cadmium-adapted cells, relevant not only for tumor initiation, but also for later steps in tumor development. Future research needs to clarify the relevance of these interactions for low exposure conditions in humans.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据