4.4 Review

Animal-vegetal axis patterning mechanisms in the early sea urchin embryo

期刊

DEVELOPMENTAL BIOLOGY
卷 218, 期 1, 页码 1-12

出版社

ACADEMIC PRESS INC
DOI: 10.1006/dbio.1999.9553

关键词

transcription factor; pattern formation; gene regulation; asymmetric cleavage; maternal determinants; Wnt; Notch; catenin; Sox; Ets; cell-cell signaling; induction; cell fate specification

资金

  1. NIGMS NIH HHS [GM25553] Funding Source: Medline

向作者/读者索取更多资源

We discuss recent progress in understanding how cell fates are specified along the animal-vegetal axis of the sea urchin embryo. This process is initiated by cell-autonomous, maternally directed, mechanisms that establish three unique gene-regulatory domains. These domains are defined by distinct sets of vegetalizing (beta-catenin) and animalizing transcription factor (ATF) activities and their region of overlap in the macromeres, which specifies these cells as early mesendoderm. Subsequent signaling among cleavage-stage blastomeres further subdivides fates of macromere progeny to yield major embryonic tissues. Zygotically produced Wnt8 reinforces maternally regulated levels of nuclear beta-catenin in vegetal derivatives to down regulate ATF activity and further promote mesendoderm fates. Signaling through the Notch receptor from the vegetal micromere lineages diverts adjacent mesendoderm to secondary mesenchyme fates. Continued Wnt signaling expands the vegetal domain of beta-catenin's transcriptional regulatory activity and competes with animal signaling factors, including BMP2/4, to specify the endoderm-ectoderm border within veg(1) progeny. This model places new emphasis on the importance of the ratio of maternally regulated vegetal and animal transcription factor activities in initial specification events along the animal-vegetal axis. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据