4.8 Article

Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide

期刊

JOURNAL OF CLINICAL INVESTIGATION
卷 105, 期 4, 页码 497-504

出版社

AMER SOC CLINICAL INVESTIGATION INC
DOI: 10.1172/JCI8541

关键词

-

资金

  1. NIAID NIH HHS [AI-38505, AI-01476] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM054060, R01 GM050870, GM-56060, R37 GM054060] Funding Source: Medline

向作者/读者索取更多资源

Lipopolysaccharide (LPS) is the main inducer of shock and death in Gram-negative sepsis. Recent evidence suggests that LPS-induced signal transduction begins with CD14-mediated activation of 1 or more Toll-like receptors (TLRs). The lipid A analogues lipid IVa and Rhodobacter sphaeroides lipid A (RSLA) exhibit an uncommon species-specific pharmacology Both compounds inhibit the effects of LPS in human cells but display LPS-mimetic activity in hamster cells. We transfected human TLR4 or human TLR2 into hamster fibroblasts to determine if either of these LPS signal transducers is responsible for the species-specific pharmacology RSLA and lipid IVa strongly induced NF-KB activity and IL-6 release in Chinese hamster ovary fibroblasts expressing CD14 (CHO/CD14), but these compounds antagonized LPS antagonists in CHO/CD14 fibroblasts that overexpressed human TLR4. No such antagonism occurred in cells overexpressing human TLR2. We cloned TLR4 from hamster macrophages and found that human THP-1 cells expressing the hamster TLR4 responded to Lipid IVa as an LPS mimetic, as if they were hamster in origin. Hence, cells heterologously overexpressing TLR4 from different species acquired a pharmacological phenotype with respect to recognition of lipid A substructures that corresponded to the species from which the TLR4 transgene originated. These data suggest that TLR4 is the central lipid A-recognition protein in the LPS receptor complex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据