4.7 Article

Connectivity of forest fuels and surface fire regimes

期刊

LANDSCAPE ECOLOGY
卷 15, 期 2, 页码 145-154

出版社

SPRINGER
DOI: 10.1023/A:1008181313360

关键词

connectivity; correlation length; elevation gradient; fire spread; forest gap model; fuel characteristics; mixed conifer forest; Sierra Nevada; surface fire regime

向作者/读者索取更多资源

The connectivity of a landscape can influence the dynamics of disturbances such as fire. In fire-adapted ecosystems, fire suppression may increase the connectivity of fuels and could result in qualitatively different fire patterns and behavior. We used a spatially explicit forest simulation model developed for the Sierra Nevada to investigate how the frequency of surface fires influences the connectivity of burnable area within a forest stand, and how this connectivity varies along an elevation gradient. Connectivity of burnable area was a function of fuel loads, fuel moisture, and fuel bed bulk density. Our analysis isolated the effects of fuel moisture and fuel bed bulk density to emphasize the influence of fuel loads on connectivity. Connectivity was inversely related to fire frequency and generally increased with elevation. However, certain conditions of fuel moisture and fuel bed bulk density obscured these relationships. Nonlinear patterns in connectivity across the elevation gradient occurred as a result of gradients in fuel loads and fuel bed bulk density that are simulated by the model. Changes in connectivity with elevation could affect how readily fires can spread from low elevation sites to higher elevations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据