4.7 Article

Down-regulation of microRNA-21 reduces inflammation and podocyte apoptosis in diabetic nephropathy by relieving the repression of TIMP3 expression

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 108, 期 -, 页码 7-14

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2018.09.007

关键词

miR-21; Diabetic nephropathy; Streptozotocin; High glucose; TIMP3

资金

  1. Kaifeng Science & Technology Bureau Foundation [1803015]
  2. Department of Education Science and Technology Research Project of Henan Province [17A320022]

向作者/读者索取更多资源

Background: Several miRNAs including miR-21 have emerged as important regulators in the development of diabetic nephropathy (DN). However, the molecular mechanism of miR-21 underlying DN pathogenesis remains to be further discussed. Methods: Streptozotocin (STZ)-induced DN rats and high glucose (HG)-induced podocytes were used as the in vivo and in vitro models of DN. miR-21 level was detected by qRT-PCR assay. Inflammatory cytokine levels were assessed by ELISA. Kidney injury of rats was evaluated by blood glucose, serum creatinine and blood urine nitrogen concentrations and periodic acid schiff (PAS) staining. Apoptosis in kidney tissues and podocytes was determined by TUNEL and flow cytometry analyses, respectively. Western blot analysis was applied to measure the protein levels of tissue inhibitors of metalloproteinase 3 (TIMP3), Bax and Bcl-2. The relationship between TIMP3 and miR-21 was confirmed by luciferase reporter assay. Results: miR-21 expression was upregulated in serum and kidney tissues of DN patients, kidney tissues of STZ-induced DN rats, and HG-treated podocytes. miR-21 depletion inhibited pro-inflammatory factor (IL-1 beta, TNF-alpha) secretions and alleviated kidney damages in STZ-induced DN rats. Moreover, TIMP3 was a target of miR-21 in HG-treated podocytes. Additionally, TIMP3 overexpression abated HG-induced inflammatory responses and podocyte apoptosis. Furthermore, the inhibitory effects of TIMP3 on inflammatory responses and podocyte apoptosis were alleviated by increased miR-21. Conclusion: The down-regulation of miR-21 inhibited the progression of DN by targeting TIMP3 in STZ-induced DN rats and HG-treated podocytes, elucidating a novel regulatory mechanism of miR-21 in DN progression and offering a potential target for DN therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据