4.6 Article

Dendritic spine formation and pruning: common cellular mechanisms?

期刊

TRENDS IN NEUROSCIENCES
卷 23, 期 2, 页码 53-57

出版社

ELSEVIER SCIENCE LONDON
DOI: 10.1016/S0166-2236(99)01499-X

关键词

-

向作者/读者索取更多资源

The recent advent of novel high-resolution imaging methods has created a flurry of exciting observations that address a century-old question: what are biological signals that regulate formation and elimination of dendritic spines? Contrary to the traditional belief that the spine is a stable storage site of long-term neuronal memory, the emerging picture is of a dynamic structure that can undergo fast morphological variations. Recent conflicting reports on the regulation of spine morphology lead to the proposal of a unifying hypothesis for a common mechanism involving changes in postsynaptic intracellular Ca2+ concentration, [Ca2+](i): a moderate rise in [Ca2+](i) causes elongation of dendritic spines, while a very large increase in [Ca2+](i) causes fast shrinkage and eventual collapse of spines. This hypothesis provides a parsimonious explanation for conflicting reports on activity-dependent changes in dendritic spine morphology, and might link these changes to functional plasticity in central neurons.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据