4.3 Article

A scalar relativistic full-potential LCAO method

期刊

JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN
卷 69, 期 2, 页码 532-542

出版社

PHYSICAL SOC JAPAN
DOI: 10.1143/JPSJ.69.532

关键词

scalar relativistic calculations; full-potential calculations; LCAO method; density-functional theory; band calculations; structure optimizations

向作者/读者索取更多资源

We present a new scalar relativistic formulation for the full-potential linear-combination-of-atomic-orbitals method based on the density-functional theory. Three approximations are introduced to overcome computational difficulty. The first is to consider only the large component of the four-component spinor, neglecting the small component. The second is to neglect the energy dependence in the Hamiltonian reduced for the large component. The third is to replace the material-dependent potential with the atomic potential in relativistic corrections. After the three approximations, we identify the mass-velocity and Darwin terms and also the spin-orbit coupling, where the latter is to be omitted according to the definition of the scalar relativistic formulation. The computational effort of the present method is reduced considerably in comparison with that of the fully relativistic method, being almost the same as that of the nonrelativistic method. We apply the present method within the local-density approximation to several diatomic molecules with heavy elements, crystalline Au, and crystalline InSb. The results are improved considerably in comparison with the nonrelativistic results. The calculated structural properties are in good agreement with the fully relativistic results and also with the experimental results. The calculated electronic properties are also improved considerably in comparison with the nonrelativistic results and are also in good agreement with the fully relativistic results except for the effect due to the spin-orbit coupling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据