4.8 Article

Electron capture dissociation for structural characterization of multiply charged protein cations

期刊

ANALYTICAL CHEMISTRY
卷 72, 期 3, 页码 563-573

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac990811p

关键词

-

资金

  1. NIGMS NIH HHS [GM16609] Funding Source: Medline

向作者/读者索取更多资源

For proteins of < 20 kDa, this new radical site dissociation method-cleaves different and many more backbone bonds than the conventional MS/MS methods (e.g, collisionally activated dissociation, CAD) that add energy directly to the even-electron ions. A minimum kinetic energy difference between the electron and ion maximizes capture; a 1 eV difference reduces capture by 10(3). Thus, in an FTMS ion cell with added electron trapping electrodes, capture appears to be achieved best at the boundary between the potential wells that trap the electrons and ions, now providing 80 +/- 15% precursor ion conversion efficiency. Capture cross section is dependent on the ionic charge squared (z(2)), minimizing the secondary dissociation of lower charge fragment ions. Electron capture is postulated to occur initially at a protonated site to release an energetic (similar to 6 eV) H-. atom that is captured ata high-affinity site such as -S-S- or backbone amide to cause nonergodic (before energy randomization) dissociation. Cleavages between every pair of amino acids in mellitin (2.8 kDa) and ubiquitin (8.6 kDa) are represented in their ECD and CAD spectra, providing complete data for their de novo sequencing. Because posttranslational modifications-such as carboxylation, glycosylation, and sulfation are less easily lost in ECD than in CAD, ECD assignments of their sequence positions are far more specific.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据