4.7 Article

Phase information and the evolution of cosmological density perturbations

期刊

出版社

OXFORD UNIV PRESS
DOI: 10.1046/j.1365-8711.2000.03086.x

关键词

methods : statistical; cosmology : theory; large-scale structure of Universe

向作者/读者索取更多资源

The Fourier transform of cosmological density perturbations can be represented in terms of amplitudes and phases for each Fourier mode. We investigate the phase evolution of these modes using a mixture of analytical and numerical techniques. Using a toy model of one-dimensional perturbations evolving under the Zel'dovich approximation as an initial motivation, we develop a statistic that quantifies the information content of the distribution of phases. Using numerical simulations beginning with more realistic Gaussian random-phase initial conditions, we show that the information content of the phases grows from zero in the initial conditions, first slowly and then rapidly when structures become non-linear. This growth of phase information can be expressed in terms of an effective entropy. Gaussian initial conditions are a maximum entropy realization of the initial power spectrum; gravitational evolution decreases the phase entropy. We show that our definition of phase entropy results in a statistic that explicitly quantifies the information stored in the phases of density perturbations (rather than their amplitudes), and that this statistic displays interesting scaling behaviour for self-similar initial conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据