4.5 Article

Efficient introduction of aryl bromide functionality into proteins in vivo

期刊

FEBS LETTERS
卷 467, 期 1, 页码 37-40

出版社

WILEY
DOI: 10.1016/S0014-5793(00)01120-0

关键词

amino acid analog; para-bromophenylalanine; multiwavelength anomalous diffraction; phenylalanyl-tRNA synthetase; phenylalanine replacement; protein engineering

向作者/读者索取更多资源

Artificial proteins can be engineered to exhibit interesting solid state, liquid crystal or interfacial properties and may ultimately serve as important alternatives to conventional polymeric materials. The utility of protein-based materials is limited, however, by the availability of just the 20 amino acids that are normally recognized and utilized by biological systems; many desirable functional groups cannot be incorporated directly into proteins by biosynthetic means. In this study, we incorporate para-bromopbenylalhnine (p-Br-phe) into a model target protein, mouse dihydrofolate reductase (DHFR), by using a bacterial phenylalanyl-tRNA synthetase (PheRS) variant with relaxed substrate specificity. Coexpression of the mutant PheRS and DHFR in a phenylalanine auxotrophic Escherichia coli host strain grown in p-Br-phe-supplemented minimal medium resulted in 88% replacement of phenylalanine residues by p-Br-phe; variation in the relative amounts of phe and p-Br-phe in the medium allows control of the degree of substitution by the analog. Protein expression yields of 20-25 mg/l were obtained from cultures supplemented with p-Br-phe; this corresponds to about two-thirds of the expression levels characteristic of cultures supplemented with phe. The aryl bromide function is stable under the conditions used to purify DHFR and creates new opportunities for post-translational derivatization of brominated proteins via metal-catalyzed coupling reactions. In addition, bromination may be useful in X-ray studies of proteins via the multiwavelength anomalous diffraction (MAD) technique. (C) 2000 Federation of European Biochemical Societies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据