4.7 Review

Differential regulation of p27Kip1 expression by mitogenic and hypertrophic factors:: Involvement of transcriptional and posttranscriptional mechanisms

期刊

JOURNAL OF CELL BIOLOGY
卷 148, 期 3, 页码 543-556

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1083/jcb.148.3.543

关键词

growth factors; cell cycle; CDK inhibitors; gene expression; smooth muscle cells

向作者/读者索取更多资源

Platelet-derived growth factor-BE (PDGF-BB) acts as a full mitogen for cultured aortic smooth muscle cells (SMC), promoting DNA synthesis and cell proliferation. In contrast, angiotensin II (Ang II) in duces cellular hypertrophy as a result of increased protein synthesis, but is unable to drive cells into S phase. In an effort to understand the molecular basis for this differential growth response, we have examined the downstream effects of PDGF-BB and Ang II on regulators of the cell cycle machinery in rat aortic SMC. Both PDGF-BB and Ang II were found to stimulate the accumulation of G(1) cyclins with similar kinetics. In addition, little difference was observed in the expression level of their catalytic partners, Cdk4 and Cdk2. However, while both factors increased the enzymatic activity of Cdk4, only PDGF-BB stimulated Cdk2 activity in late G(1) phase. The lack of activation of Cdk2 in Ang II-treated cells was causally related to the failure of Ang II to stimulate phosphorylation of the enzyme on threonine and to downregulate p27(Kip1) expression. By contrast, exposure to PDGF-BB resulted in a progressive and dramatic reduction in the level of p27(Kip1) protein. The time course of p27(Kip1) decline was correlated with a reduced rate of synthesis and an increased rate of degradation of the protein. Importantly, the repression of p27(Kip1) synthesis by PDGF-BB was associated with a marked attenuation of Kip1 gene transcription and a corresponding decrease in Kip1 mRNA accumulation. We also show that the failure of Ang II to promote S phase entry is not related to the autocrine production of transforming growth factor-beta 1 by aortic SMC. These results identify p27(Kip1) as an important regulator of the phenotypic response of vascular SMC to mitogenic and hypertrophic stimuli.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据