4.7 Article

LDA and GGA calculations of alkali metal adsorption at the (001) surface of MgO

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 112, 期 6, 页码 3014-3022

出版社

AMER INST PHYSICS
DOI: 10.1063/1.480875

关键词

-

向作者/读者索取更多资源

The adsorption geometry, binding energy and electronic structure of alkali metal overlayers on the MgO (001) surface have been studied by means of density functional theory, using Gaussian-type orbitals to expand the wave functions and electronic charge density. A two-dimensionally periodic slab of MgO with alkali metal adsorbed at one surface was used to model the semi-infinite system. Li, Na, and K were considered at both half- and quarter-monolayer coverage. Results were compared for the local density approximation and for two different forms of the generalized gradient approximation. In all cases Li was found to interact with the surface approximately twice as strongly as Na and three times as strongly as K. The epitaxial binding energies were, however, always less than or close to the bulk cohesive energies of the respective alkali metals, suggesting an instability of the adsorbed film toward the formation of two- or three-dimensional islands, in agreement with experiment. Spin polarized and unpolarized calculations were compared to detect metal-insulator transitions in the alkali overlayer. Only Li adsorbed at 1:4 coverage was found to have lower energy in a spin polarized (hence nonmetallic) state. (C) 2000 American Institute of Physics. [S0021-9606(00)71006-3].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据