4.3 Article

Spatially controlled cell adhesion on three-dimensional substrates

期刊

BIOMEDICAL MICRODEVICES
卷 12, 期 5, 页码 787-795

出版社

SPRINGER
DOI: 10.1007/s10544-010-9433-2

关键词

Three-dimensional cell culture; Biopolymer; Patterning; Microthermoforming; Tissue engineering

向作者/读者索取更多资源

The microenvironment of cells in vivo is defined by spatiotemporal patterns of chemical and biophysical cues. Therefore, one important goal of tissue engineering is the generation of scaffolds with defined biofunctionalization in order to control processes like cell adhesion and differentiation. Mimicking extrinsic factors like integrin ligands presented by the extracellular matrix is one of the key elements to study cellular adhesion on biocompatible scaffolds. By using special thermoformable polymer films with anchored biomolecules micro structured scaffolds, e.g. curved and A mu-patterned substrates, can be fabricated. Here, we present a novel strategy for the fabrication of A mu-patterned scaffolds based on the Substrate Modification and Replication by Thermoforming (SMART) technology: The surface of a poly lactic acid membrane, having a low forming temperature of 60A degrees C and being initially very cell attractive, was coated with a photopatterned layer of poly(L-lysine) (PLL) and hyaluronic acid (VAHyal) to gain spatial control over cell adhesion. Subsequently, this modified polymer membrane was thermoformed to create an array of spherical microcavities with diameters of 300 A mu m for 3D cell culture. Human hepatoma cells (HepG2) and mouse fibroblasts (L929) were used to demonstrate guided cell adhesion. HepG2 cells adhered and aggregated exclusively within these cavities without attaching to the passivated surfaces between the cavities. Also L929 cells adhering very strongly on the pristine substrate polymer were effectively patterned by the cell repellent properties of the hyaluronic acid based hydrogel. This is the first time cell adhesion was controlled by patterned functionalization of a polymeric substrate with UV curable PLL-VAHyal in thermoformed 3D microstructures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据