4.3 Article

A computational and experimental study inside microfluidic systems: the role of shear stress and flow recirculation in cell docking

期刊

BIOMEDICAL MICRODEVICES
卷 12, 期 4, 页码 619-626

出版社

SPRINGER
DOI: 10.1007/s10544-010-9414-5

关键词

Microfluidic device; Computational fluid dynamic; Cell docking; Shear stress

资金

  1. Progetto Roberto Rocca Collaboration
  2. US Army Engineer Research and Development Center
  3. Institute for Soldier Nanotechnology
  4. National Science Foundation
  5. National Institute of Health [HL092836, EB009196, DE019024]
  6. National Research Foundation of Korea [R11-2008-044-01001-0]
  7. Korea Industrial Technology Foundation (KOTEF)
  8. National Research Foundation of Korea [R11-2008-044-01001-0] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

In this paper, microfluidic devices containing microwells that enabled cell docking were investigated. We theoretically assessed the effect of geometry on recirculation areas and wall shear stress patterns within microwells and studied the relationship between the computational predictions and experimental cell docking. We used microchannels with 150 mu m diameter microwells that had either 20 or 80 mu m thickness. Flow within 80 mu m deep microwells was subject to extensive recirculation areas and low shear stresses (< 0.5 mPa) near the well base; whilst these were only presented within a 10 mu m peripheral ring in 20 mu m thick microwells. We also experimentally demonstrated that cell docking was significantly higher (p < 0.01) in 80 mu m thick microwells as compared to 20 mu m thick microwells. Finally, a computational tool which correlated physical and geometrical parameters of microwells with their fluid dynamic environment was developed and was also experimentally confirmed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据