4.8 Article

Discrete in vivo roles for the MutL homologs Mlh2p and Mlh3p in the removal of frameshift intermediates in budding yeast

期刊

CURRENT BIOLOGY
卷 10, 期 3, 页码 145-148

出版社

CELL PRESS
DOI: 10.1016/S0960-9822(00)00314-6

关键词

-

向作者/读者索取更多资源

The DNA mismatch repair machinery is involved in the correction of a wide variety of mutational intermediates. In bacterial cells, homodimers of the MutS protein bind mismatches and MutL homodimers couple mismatch recognition to downstream processing steps [1], Eukaryotes possess multiple MutS and MutL homologs that form discrete, heterodimeric complexes with specific mismatch recognition and repair properties. In yeast, there are six MutS (Msh1-6p) and four MutL (Mlh1-3p and Pms1p) family members [2,3], Heterodimers comprising Msh2p and Msh3p or Msh2p and Msh6p recognize mismatches in nuclear DNA [4,5] and the subsequent processing steps most often involve a Mlh1p-Pms1p heterodimer [6,7], Mlh1p also forms heterodimeric complexes with Mlh2p and Mlh3p [8], and a minor role for Mlh3p in nuclear mismatch repair has been reported [9]. No mismatch repair function has yet been assigned to the fourth yeast MutL homolog, Mlh2p, although mlh2 mutants exhibit weak resistance to some DNA damaging agents [10]. We have used two frameshift reversion assays to examine the roles of the yeast Mlh2 and Mlh3 proteins in vivo. This analysis demonstrates, for the first time, that yeast Mlh2p plays a role in the repair of mutational intermediates, and extends earlier results implicating Mlh3p in mismatch repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据