4.3 Article

Development and evaluation of microdevices for studying anisotropic biaxial cyclic stretch on cells

期刊

BIOMEDICAL MICRODEVICES
卷 10, 期 6, 页码 869-882

出版社

SPRINGER
DOI: 10.1007/s10544-008-9201-8

关键词

anisotropic biaxial cyclic stretching; vascular smooth muscle cells; strain anisotropy

资金

  1. University of Colorado
  2. Children's Hospital

向作者/读者索取更多资源

Mechanical effects on cells have received more and more attention in the studies of tissue engineering, cellular pathogenesis, and biomedical device design. Anisotropic biaxial cyclic stress, reminiscent of the in vivo cellular mechanical environment, may promise significant implications for biotechnology and human health. We have designed, fabricated and characterized a microdevice that imparts a variety of anisotropic biaxial cyclic strain gradients upon cells. The device is composed of an elastic membrane with microgroove patterns designed to associate cell orientation axes with biaxial strain vectors on the membrane and a Flexcell stretcher with timely controlled vacuum pressure. The stretcher generates strain profile of anisotropic biaxial microgradients on the membrane. Cell axes determined by the microgrooves are associated with the membrane strain profile to impose proper biaxial strains on cells. Using vascular smooth muscle cells as a cell model, we demonstrated that the strain anisotropy index of a cell was likely one of the determinant mechanical factors in cell structural and functional adaptations. The nuclear shape and cytoskeleton structure of smooth muscle cells were influenced by mechanical loading, but were not significantly affected by the strain anisotropy. However, cell proliferation has profound responses to strain anisotropy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据