4.5 Article

Tailor-made three-dimensional hybrid scaffolds for cell cultures

期刊

BIOMEDICAL MATERIALS
卷 6, 期 4, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1748-6041/6/4/045008

关键词

-

向作者/读者索取更多资源

The construction of the ideal three-dimensional scaffold for cell culture is one of the most intriguing topics in tissue engineering. It has been shown that cells can be cultured on most organic biomimetic materials, which now are losing popularity in favour of novel, hybrid systems. In this study, a series of photosensitive sol-gel hybrid materials, based on silicon-zirconium and silicon-titanium oxides, have been investigated for their suitability in three-dimensional scaffold fabrication. These materials can be structured by two-photon polymerization, a laser-based technique allowing the fabrication of micrometre-size structures with submicron resolution. The work presented here examined the effect of the organic/inorganic composition of the materials on cell behaviour and the establishment of a 'cell-culture friendly' environment. This is vital for cell adhesion, growth and differentiation, as the organic part of the material provides the soft matrix for cell growth, whereas the inorganic component gives the mechanical stability and rigidity of the three-dimensional structures. In addition, the use of femtosecond laser structuring permits the fabrication of a wide range of mechanically stable scaffolds of different sizes and shapes to be tested in terms of cell viability, proliferation and orientation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据